Home | About NASC | Address/Staff
Ask a question | Help


The European Arabidopsis Stock Centre

Noccaea caerulescens

Donated by

  • Martin Broadley Plant and Crop Sciences Division, Plant Sciences Building, School of Biosciences, University of Nottingham

Click here to view all 20 of these lines.


Noccaea caerulescens

  • These are all wild type lines.
  • This collection contains 20 single seed descent lines stock numbers N9681...N9700
  • Ploidy 2n = 2x = 14
  • Formerly known as Thlaspi caerulescens


  • Order Brassicales
  • Family Brassicaceae
  • Tribe Nocceeae / Lepideae
  • Clade Noccaea
  • Genus Noccaea
  • Species epithet caerulescens
  • Ecotype Saint-Laurent-Le-Minier
  • Ecotype abbreviation Ganges

Species variant data

ecotype information
collection date
minimum latitude
maximum latitude
minimum longitude
maximum longitude
minimum altitude
maximum altitude

daily temperature month jan feb mar apr may jun jul aug sep oct nov dec
daily temperature Mean high °C10351014171713842
Mean low °C-3-3-20481111840-2
monthly precipitationMean rain cm12.67.715.6711.79.536.453.334.059.8219.315.113.8

Habitat: Heavy-metal-enriched (Zn-Pb-Cd) lead/zinc mine spoil tailings (closed 1993), on a metaliferous, calamine, calcareous, porous, basal substrate, located in the south Cévennes mountain range, S. France. Site consists of Zn/Pb sulphides and oxides associated with barite. The region's climate and vegetation are considered to be generally sub-Mediterranean.

  • Zn: 35230 – 61710 µg g–1 soil d.w.
  • Cd: 223 - 316 µg g–1 soil d.w.
  • Pb: 10610 – 28390 µg g–1 soil d.w.
  • pH: 6.5 - 8
  • Location: Les Malines, Saint-Laurent-Le-Minier, Ganges, Parc National des Cévènnes, Département du Gard, Région Languedoc-Roussillon, (40 km north of Montpellier).

    Country: France


    • Hammond, J.P. et al. 2006. A comparison of the Thlaspi caerulescens and Thlaspi arvense shoot transcriptomes. New Phytologist 170(2): 239-260. PMID. 16608451.
    • Assuncao, A.G. et al. 2008. Intraspecific variation of metal preference patterns for hyperaccumulation in Thlaspi caerulescens: evidence from binary metal exposures. Plant and Soil 303(1): 289-299. Link to Article.
    • Assuncao, A.G.L., et al. 2003. Differential metal-specific tolerance and accumulation patterns among Thlaspi caerulescens populations originating from different soil types. New Phytologist 159(2), 411-419. Link to Article.
    • Escarré, J. et al. 2000. Zinc and cadmium hyperaccumulation by Thlaspi caerulescens from metalliferous and nonmetalliferous sites in the Mediterranean area: implications for phytoremediation. New Phytologist 145(3): 429-437. Link to Article.
    • Peer, W.A., et al. 2003. Identifying model metal hyperaccumulating plants: germplasm analysis of 20 Brassicaceae accessions from a wide geographical area. New Phytologist 159(2): 421-430. Link to Article.
    • Plaza, S., et al. 2007. Expression and functional analysis of metal transporter genes in two contrasting ecotypes of the hyperaccumulator Thlaspi calerulescens. Journal of Experimental Botany 58(7): 1717-1728. PMID. 17404382.
    • Reeves, R.D., et al. 2001. Distribution and Metal-Accumulating Behavior of Thlaspi caerulescens and Associated Metallophytes in France. International Journal of Phytoremediation 3(2): 145-172.Link to Article.
    • Robinson, B.H. et al. 1998. The potential of Thlaspi caerulescens for phytoremediation of contaminated soils. Plant and Soil 203(1): 47-56. Link to Article.
    • Zha, H.G., et al. 2004. Co-segregation analysis of cadmium and zinc accumulation in Thlaspi caerulescens interecotypic crosses. New Phytologist 163(2): 299-312. Link to Article.
    • Zhao, F.J., Lombi, E. & McGrath, S.P. 2003. Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens. Plant and Soil 249(1): 37-43. Link to Article.